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Abstract

We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO) spanning 1568–2007 CE from
northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new
record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO
are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia.
Multi-tape method (MTM) and cross-wavelet analyses indicate that robust multidecadal (,64–128 years) variability is
present throughout the new proxy record. Our results have important implications concerning the influence of North
Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on
global multidecadal climate variability.
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Introduction

The Atlantic Multidecadal Oscillation (AMO) is a mode of

natural climate variability occurring in the North Atlantic Ocean.

AMO has a principal expression in mean sea surface temperatures

(SST) anomalies north of the equator with a period of 65–80 years

and an amplitude of ,0.4uC on a multidecadal timescale [1,2].

The AMO is thought to be induced by Atlantic Meridional

Overturning Circulation (AMOC) variations and associated ocean

heat transport fluctuations [1,3]. It exerts significant influences on

global and regional climates [2,3], such as North American and

European summer rainfall regimes [4–6], African [7,8] and

northeastern Brazilian rainfall patterns [9,10], and the frequency

of severe Atlantic hurricanes [7]. In addition, the AMO alternately

obscures and exaggerates the global increase in temperatures due

to human-induced global warming [11,12].

Although AMO is a feature of the North Atlantic Ocean basin,

recent studies suggest that it is also related to multidecadal

variability of Asian and Indian monsoons [13–17]. Through

comprehensive observational analyses and ensemble experiments

with atmospheric general circulation models (AGCMs), it was found

that twarm-phase AMO leads to warmer winters in much of China,

resulting in less precipitation in coastal areas of southern China and

more precipitation in northern China [17]. Wang et al. [16]

extended these analyses to examine the seasonal dependence of the

AMO influence on Asian monsoon. Their results indicated that

warm-phase AMO causes increases in air temperature in East Asia

and rainfall in Northeast China in all four seasons. In addition,

positive phases of AMO induce strong Southeast and East Asian

summer monsoons, and a late withdrawal of the Indian summer

monsoon [15]. All these studies have together demonstrated a

probable influence of Atlantic SST anomalies on Asian climate on

multidecadal timescales.

However, only two full cycles of the AMO (from warm to cool

phases) are represented in instrumental records. Thus, it is difficult

to fully understand the low-frequency characteristics of AMO and

mechanisms of its longer-term influence on East Asian climate

[18,19].

Several high-resolution proxies have been developed and used

to assess longer-term annual to multidecadal variability in areas

surrounding the North Atlantic, but none have looked at the

longer-term (multicentennial) characteristics of AMO in East Asia

[1,19–21]. In this study, a climate signal with consistent AMO

properties has been identified in Scots pine (Pinus sylvestris) tree-ring

widths from trees growing in central eastern Siberia and

northeastern China over the past 440 years (1568–2007 CE).

This proxy reconstruction suggests a secular influence of AMO on

moisture availability in the region. Perhaps most importantly, it

provides support to the potential global nature of multidecadal

climate variability related to AMO. The reconstruction is

compared with both the instrumental AMO record and an

existing multicentennial tree-ring reconstruction of AMO [20] to

evaluate the AMO signal reliability.

Methods

A total of 191 tree-ring width records from moisture-sensitive

Scots pine from six localities in northeastern Asia were assembled

for this analysis (Fig. 1, Table 1). Four chronologies from

Zhigansk, Khotugn, Tschita and Taksimo in central Siberia,

Russia [22] were obtained from the International Tree Ring Data

Bank (ITRDB; http://www.ncdc.noaa.gov/paleo/treering.html).
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Two new chronologies were generated from 72 individual Scots

pine trees from Mangui and Mengkeshan in northeastern China.

To preserve the low-frequency variability, all raw tree-ring series

were standardized by fitting them to negative exponential curves

or linear regressions with negative or zero slopes. A nested

approach as described in [23], which takes into account the

decreasing number of chronologies back in time, was used to

develop the longest possible proxy record. The first principle

component of the chronologies (PC1) was employed to compare

with the instrumental and Gray et al. (2004) tree-ring based AMO

records. The standard chronologies were used in all the following

analysis.

Correlations between the six chronologies and the monthly

instrumental AMO index calculated from North Atlantic SST

anomalies [4,24] were determined using Pearson correlation

coefficients. Palmer Drought Severity Indices (PDSI) during warm

(1930–1960) and cold (1970–1990) AMO phases [20] from six

nearby climate stations also was compared to the PC1 series to

assess the impact of AMO on local moisture conditions. PDSI is a

prominent and often used index of meteorological drought to

measure departures from local mean moisture conditions [25]. To

identify the major periodicities present in our PC1 proxy record, a

multi-tape method (MTM) spectral analysis [26] was performed.

In addition, a cross wavelet analysis was employed to determine

common power and relative phases of our PC1 record and the

instrumental and reconstructed AMO [20] records in the time-

frequency domain [27]. The Morlet wavelet (with v0 = 6) was used

in this analysis and the wavelet power significance was tested at the

95% confidence level against a red-noise background [28].

Results

Correlation coefficients between the instrumental AMO series

and individual tree-ring chronologies used to develop the new

reconstruction show weak (Zhigansk), moderate (Khotugn and

Mengkeshan), and strong (Taksimo, Tschita and Mangui)

responses of tree growth to long term changes in North Atlantic

SST (Table 2). PC1 of the six East Asian chronologies exhibits

correlations of 0.37 and 0.70 with the annual and 11-year moving

average AMO instrumental index (1856–2007), and correlations

of 0.25 (Fig. 2) and 0.44 with the annual and 11-year moving

average of the tree-ring based AMO reconstruction (1568–1990)

[20], separately. The East Asian PC1 series, the AMO

instrumental index, and the existing tree-ring based AMO record

from the Atlantic rim exhibit similar annual and multidecadal

patterns of variation over the past 152 years (Fig. 3). Furthermore,

the AMO warm and cool phases of the East Asian series and the

reconstruction from the Atlantic rim exhibit good correspondence

Figure 1. Map of correlation between annual mean precipita-
ble water and annual AMO index (1948–2007) across northeast
Asia. Country boundaries for Russia, Mongolia, and northeast China are
shown on the map. It is plotted by the NOAA/ESRL Physical Science
Division, Boulder Colorado (http://www.esrl.noaa.gov). Letters on the
map represent different tree-ring sampling sites: A – Zhigansk, B –
Khotugn, C – Tschita, D – Taksimo, E – Mangui, F – Mengkeshan.
Triangles, circles, and squares represent sampling sites, PDSI points, and
weather stations, respectively. Differents colors represent different
correlation coefficients marked as the legend at the bottom of the map.
The figure on a contour represents the correlation coefficient of this
contour.
doi:10.1371/journal.pone.0022740.g001

Table 1. Site information and general statistics of six Scots pine tree-ring chronologies in northeast Asia.

Site name Taksimo Tschita Mangui Khotugn Mengkeshan Zhigansk

Country Russia Russia China Russia China Russia

Latitude (N) 56u209 56u509 52u039 63u239 52u379 66u319

Longitude (E) 114u409 118u059 122u069 125u489 124u189 122u209

Altitude (m) 510 700 714 100 720 180

Time span 1707–1996 1720–1996 1791–2008 1568–1991 1628–2007 1564–1991

Tree number 32 28 34 28 38 31

MS 0.14 0.16 0.15 0.19 0.13 0.20

SD 0.17 0.20 0.27 0.26 0.28 0.23

AC1 0.49 0.48 0.75 0.59 0.87 0.37

MC 0.34 0.45 0.30 0.43 0.21 0.34

SNR 13.5 13.0 11.5 14.9 8.0 12.1

EPS 0.93 0.93 0.92 0.94 0.89 0.92

VFE % 37.9 49.8 35.6 46.9 29.7 37.4

Notes: MS-Mean sensitivity; SD-Standard deviation; AC1-Autocorrelation order 1; MC-Mean correlation; SNR-Signal-to-noise ratio; EPS-Expressed population signal;
VFE-Variance in first eigenvector.
doi:10.1371/journal.pone.0022740.t001
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except for the 18th century over the last 423 years (Fig. 3). The

interval from the late1700s to the early 1800s seems to be a quasi-

quiescent period of the AMO, which does not differ significantly

from the series mean [20]. These results suggest that the variability

observed in the instrumental AMO series imprint on tree-ring

widths and that the warm AMO phases increase radial growth of

Scots pine forests in northeast Asia.

MTM analysis of the East Asian PC1 series reveals pronounced

variability at interannual (2.9–2.1 years) and multidecadal (33 and

73 years) time scales (Fig. 4A). The existing AMO reconstruction

from the Atlantic rim [20] exhibited significant periods over a wide

band from ,40–128 year (Fig. 4B). However, the spectra for these

two series showed very similar periodicities, with overlaps at 73,

2.9 and 2.1 years, while the AMO reconstruction from Atlantic

rim has more long-periods such as 93, 60 and 44 year. A cross-

wavelet transform of the East Asian PC1 series and the instrument

AMO index shows a persistent and significant multidecadal signal

Figure 2. Cross correlation between the tree-ring record from
northeast Asia and Gray et al. (2004) AMO reconstruction. Blue
horizontal line represents a 95% significance level tested by Pearson
correlation analysis.
doi:10.1371/journal.pone.0022740.g002

Table 2. Correlation coefficients of monthly AMO index and six tree-ring chronologies (1856–2007).

AMO PC1 Taksimo Tschita Mangui Khotugn Mengkeshan Zhigansk

Average 0.37 0.27 0.34 0.42 0.17 0.19 0.08

Jan 0.30 0.24 0.25 0.34 0.15 0.21 0.07

Feb 0.27 0.19 0.26 0.32 0.11 0.18 0.05

Mar 0.24 0.18 0.24 0.27 0.10 0.11 0.03

Apr 0.32 0.23 0.32 0.32 0.15 0.11 0.04

May 0.28 0.22 0.24 0.32 0.11 0.09 0.06

Jun 0.30 0.19 0.26 0.32 0.17 0.13 0.10

Jul 0.36 0.24 0.31 0.38 0.21 0.19 0.17

Aug 0.36 0.24 0.33 0.37 0.22 0.16 0.17

Sep 0.37 0.26 0.34 0.41 0.19 0.19 0.12

Oct 0.33 0.28 0.34 0.43 0.07 0.24 0.06

Nov 0.34 0.28 0.32 0.45 0.12 0.24 0.02

Dec 0.34 0.31 0.31 0.42 0.10 0.20 0.03

Notes: Bolded values for significance at the 95% confidence level as tested by Pearson correlation.
doi:10.1371/journal.pone.0022740.t002

Figure 3. Comparisons of the intrumental, reconstructed (this
study) and Gry et al. (2004) reconstructed AMO index on
annual and 11-year moving average basis. (A) Annual comparison
of instrumental AMO index [4] (blue line), the reconstructed proxy series
from this study (black line), and [20] tree-ring based AMO reconstruc-
tion (red line). (B–D) The above three records smoothed with an 11-year
low-pass filter. Red and blue shaded areas represent warm and cold
AMO phases respectively. All series (A–D) were normalized by their
means and standard deviations. (E) Sample depth in number of cores
for the six tree-ring width chronologies.
doi:10.1371/journal.pone.0022740.g003
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centered on the roughly 70-year band almost throughout the

whole instrumental period (1856–2007) (Fig. 5A). Cross-wavelet

analysis tests the coherence between time series in the time-

frequency domain. Similarly, the East Asian PC1 series also

displays a strong coherence with the existing reconstruction in a

band from ,64–128 yr over the period 1568–1990 (Fig. 5B).

These phase relationships indicate that the East Asian PC1 series

and both the instrumental AMO index and the previous

reconstruction are almost in phases in the sectors with significant

common power. These also are confirmed by visual comparison of

the series in Fig. 3. Additionally, there are short periods of

significant common power in the 20- to 40- year bands between

the two series from the late 1570s to the early 1620s. This may

correspond to the shorter periodicity that [29] and [19] recently

attributed to the AMO. MTM and cross-wavelet analysis support

the probable link between this proxy series and multidecadal

Atlantic SST variability.

Discussion

Tree-ring time series from northeast Asia exhibit a coherent,

AMO-like pattern of variability over the last 440 years.

Although a mechanism for AMO influence on East Asian

climate is not fully understood, findings reported here support

other observational and modeling studies that have demonstrat-

ed multidecadal Asia monsoon variability is related to the AMO

[15–17]. Winters tend to be warmer and wetter than normal in

northeast China during positive phases of the AMO [17], which

induces negative surface pressure anomalies across the North

Atlantic to extend eastward to Eurasia and facilitate a weaker

Mongolian High, and thus a subdued East Asian winter

monsoon. Positive phases of AMO also are characterized by

elevated air temperatures in East Asia and increased rainfall in

northeast China in all four seasons [16]. These influences may

arise from warming Eurasian middle and upper troposphere

that result in weakened Asian winter monsoons but enhanced

summer monsoons. All of these patterns together suggest that

positive AMO phases may lead to moister conditions and longer

growing seasons (warmer falls) in northeast Asia, which is

supported by the comparisons of PDSI over the latest warm and

cold AMO phases at six sampling sites (Table 3). An opposite

pattern appears in negative phases of the AMO. In addition,

precipitable water, a measure of moisture availability, is a total

amount of water vapor in a column of the atmosphere,

measured as if all fell to the ground as precipitation. It may

affect temperature and precipitation, which in turn affects tree

growth. Despite the low correlation coefficients, this point is

also confirmed by spatial correlation fields between annual

mean precipitable water and the instrumental AMO index

(1948–2007) in this region (Fig. 1).

Figure 4. Multi-taper method spectrums for this proxy series
from 1564–2007 (A) and the tree-ring AMO reconstruction
from Atlantic rim [20] (B). Significance was tested at three levels
(99%, 95% and 90%) against a red-noise background. Digital values are
the significant periods at 99% confidence level.
doi:10.1371/journal.pone.0022740.g004

Figure 5. Cross wavelet transforms of this proxy series and the
AMO index [4] (upper panel) and [20] tree-ring based AMO
index (lower panel). The 95% significance level against red noise is
shown as a black contour. The relative phase relationship is shown as
arrows (with in-phase pointing right, anti-phase pointing left, and tree-
ring index leading AMO by 90u pointing straight down).
doi:10.1371/journal.pone.0022740.g005
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The results of correlation analyses between tree-ring chronol-

ogies and climatic factors indicate that both temperature and

precipitation influence Scots pine growth at northeast Asia (not

shown here), while the precipitation has less influence on tree-ring

widths than temperature in this area especially for Khotugn and

Mengkeshan. Also, the precipitation in the previous autumn and

winter is important to tree growth, while the temperature have the

similar influence during the previous autumn and current growing

season. The cross correlation between the tree-ring record from

northeast Asia and Gray et al. (2004) AMO reconstruction

indicates that the maximum correlation (0.26) occurred at lag one

year (Fig. 2). This may imply that the temperature or precipitation

change of the AMO will affect the following tree growth in

northeast Asia, or which may result from the strong first-order

autocorrelation in this tree-ring record.

Further research is needed to explore how multidecadal

variability in East Asian climate related to the AMO may have

contingent effects on interannual to decadal climate variations and

ecosystem processes. Recent studies of both Pacific and Atlantic

Ocean climate teleconnections in western North America found

that warm phases of the AMO synchronized sub-continental-scale

patterns in droughts and forest fires across the western U.S [6,30].

While both the El Nino-Southern Oscillation (ENSO) and Pacific

Dedacal Oscillation (PDO) were the main drivers of interannual to

decadal patterns in droughts and fires, AMO conditionally

changed the strength and spatial influence of ENSO and PDO

effects at multidecadal time scales.

This is the first Asian AMO-like proxy series spanning the last

four centuries. The proxy series confirms and extends previous

observational and modeled analyses in which it was found that the

AMO plays a role in the multidecadal variability in East Asian

climate. Furthermore, our results support that the AMO continues

with its quasi-cycle of roughly 70 (65–80) years as well as shown in

other proxy series [1,19–21]. Thus, the present AMO proxy

record has important implications for explaining past climate

change and forecasting future climate anomalies in northeast Asia.
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